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Abstract

Objectives: Family relationship is a key to understand the structure of past societies

but its archeological reconstruction mostly stays circumstantial. Archaeogenetic

information, especially genome-wide data, provide an objective approach to accu-

rately reconstruct the familial relationship of ancient individuals, thus allowing a

robust test of an archaeology-driven hypothesis of kinship. In this study, we applied

this approach to disentangle the genetic relationship of early Medieval individuals

from Korea, who were secondarily co-buried in a single jar coffin.

Materials and Methods: We obtained genome-wide data of six early Medieval

Korean individuals from a jar coffin. We inferred the genetic relatedness between

these individuals and characterized their genetic profiles using well-established popu-

lation genetics methods.

Results: Congruent with the unusual pattern of multiple individuals in a single jar coffin,

genome-wide analysis of these individuals shows that they form an extended family,

including a couple, their two children and both paternal and maternal relatives. We show

that these early Medieval Koreans have a genetic profile similar to present-day Koreans.

Discussion: We show that an unusual case of the secondary multiple burial in a single

jar coffin reflects family relationship among the co-buried individuals. We find both

paternal and maternal relatives co-buried with the nuclear family, which may suggest

a family structure with limited gender bias. We find the genetic profile of early Medi-

eval Koreans similar to that of present-day Koreans, showing that the genetic root of

the present-day Koreans goes back at least 1500 years in the Korean peninsula.
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Research Highlights

• Ancient genome-wide data find a family buried together in a jar coffin in early Medieval

Korea.

• These early Medieval Koreans have a genetic profile similar to present-day Koreans.
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1 | INTRODUCTION

The burial practice using jar coffins was widespread throughout past

societies in East Asia including Southeast Asia, northern China,

Manchuria, the Japanese archipelago, and the Korean Peninsula, start-

ing from the Neolithic period and continuing to the historic times

(Bacvarov, 2006; Boeyens et al., 2009; W. Kim, 1973; Shewan

et al., 2020). In the Korean peninsula, while prehistoric and historic

burials with jar coffins are frequently found in all regions, they are

most concentrated in the southwestern Korea, such as Naju and

Yeongam regions, during the 4–6th centuries AD (E.-J. Kim, 2021;

E. K. Kim, 2020; Kim et al., 2010; Oh, 2008; Park, 2010). Although

burials with large, human-height-scale jar coffins are famous, most jar

coffins found in Korea are much smaller than human body. Mostly,

these small jar coffins host a single individual's skeleton secondarily

collected after cremation. The practice of cremation and the following

secondary burial often result in a loss of some skeletal elements,

destruction of detailed morphological features that convey informa-

tion on the sex, age, and pathological history of the individual, and

poor preservation of biological macromolecules such as proteins and

nucleic acids. For this reason, skeletal remains from the jar coffins

have been investigated in bioanthropological and archaeogenetic

studies only in a limited scale, leaving the characteristics of people

buried in the jar-coffins an open question (M. J. Kim et al., 2010; K.-S.

Lee et al., 1999).

The Dangbuk-ri archeological site is located at Gunsan city in the

west coastal region of South Korea (Figure 1). Excavated during Sum-

mer 2016, this site includes a total of 21 burials of the early Medieval

period (5–7th century AD; or the “three kingdoms” period). Among

these 21 burials, 16 stone-cist and 4 stone-chamber burials did not

yield skeletal remains, while the remaining one jar coffin burial housed

skeletal remains of multiple individuals (Figure 2). Considering the

burial context, it is most likely that the skeletal elements of these indi-

viduals were collected secondarily into this jar coffin and buried at the
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F IGURE 1 The geographic location of the key ancient and present-day populations used in this study. Except for present-day Ulsan Koreans
from southeastern Korea, all the other groups marked on the map represent ancient east Asian groups. The base map is produced using the
natural earth public domain map dataset (https://www.naturalearthdata.com/downloads/10m-raster-data/10m-cross-blend-hypso/). The inset
shows the location of Gunsan city and the Dangbuk-ri site. AR_EN = Amur River early Neolithic individuals from the Zhalainuoer/Wuqi site;
AR_Xianbei_IA = Amur River Iron Age individuals from the Xianbei context of the Mogushan site; Boshan = an early Neolithic individual from
Shandong region; DevilsCave_N = early Neolithic individuals from the Russian Far East; HMMH_MN = middle Neolithic individual from the
Haminmangha site; Jomon_Ikawazu/Funadomari = Jomon period individuals from the Ikawazu and Funadomari sites; Kofun = Kofun period

individuals from the Iwade horizontal cave tombs; Liangdao2 = an early Neolithic individual from the Liangdao site; Miaozigou_MN = middle
Neolithic individuals from the Miaogizou site; Qihe = early Neolithic individuals from the Qihe site; Shimao_LN = late Neolithic individuals from
the Shengedaliang site; upper_YR_LN = Upper Yellow River late Neolithic individuals from the Jinchankou and Lajia sites; WLR_MN = West Liao
River (WLR) middle Neolithic individuals from the Banlashan site; WLR_LN = WLR late Neolithic individuals from the Erdaojingzi site; WLR_BA/
WLR_BA_o = WLR Bronze Age individuals from the Longtoushan site; Xitoucun = late Neolithic individuals from the Xitoucun site;
YR_MN = Yellow River middle (YR) Neolithic individuals from the Xiaowu and Wanggou site; YR_LN = YR late Neolithic individuals from the
Haojiatai/Pingliangtai/Wadian site.
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same time. This case is considered unusual because most jar coffin

burials house only one individual and because individuals in the other

types of multiple burials in the early Medieval Korea were usually

added into the burial in a sequential manner over an extended period

of time (E.-J. Kim, 2021). For example, in stone-chamber tombs with

multiple individuals interred in a sequential manner, skeletal elements

of individuals buried earlier tend to be out of their anatomical posi-

tions and placed at the periphery of the chamber because they were

moved away from the center when the next individual was interred

later (J. Lee et al., 2006).

In this study, we investigated the genetic relatedness between these

co-buried individuals and their genetic profiles using genome-wide data.

In addition to revealing the familial relationship among them, we model

their genetic profiles in terms of their relationship with ancient and

present-day East Asian populations, especially with present-day Koreans

and ancient populations near the Korean peninsula, in high-resolution by

utilizing rich information in genome-wide data.

2 | MATERIALS AND METHODS

2.1 | Archeological context of the Gunsan jar
coffin

The Dangbuk-ri site is located in Gunsan, Jeollabuk-do province on the

Korean peninsula (Figure 1). The site was salvage excavated for the con-

struction of a railroad line in 2016 by the Central Institute of Cultural

Heritage. The archeological investigation was conducted during the

period of approximately 60 days, starting from July 2016. Geographi-

cally the site was on the southern hillside of Mt. Dottae, and it covered

the top of a hill, the height of which was about 60 meters above sea

level. A total of 21 Three Kingdoms period burials were found at the

Dangbuk-ri site. Among those burials, 16 were the stone-cist type, four

burials were the stone-chamber type, and the remaining one was a jar

coffin. The stone-cist and stone-chamber tombs around the jar coffin

burial were formed in the Three Kingdoms period given their burial

structure and construction techniques. Moreover, typological analysis

on the jar coffin suggests the technique of jar manufacture closely

resembles that of the grave goods pottery from stone-chamber and

stone-cist tombs. Specifically, the shape of the ceramic bowl out of

stone-cist and stone-chamber tombs closely resemble the pottery made

in China around the 6th century CE. Considering these archeological

contexts, the jar coffin from the Dangbuk-ri site was contextually dated

to the mid-6th century CE.

The jar coffin burial was located on the southeastern hillside from

the top, surrounded by stone-cist and stone-chamber burials without

any specific pattern. The jar was laid in a circular pit and two stones

were placed beside the jar to fix the jar body. At the time of discovery,

the jar was found slanted slightly. The mouth area of the jar has been

broken without a cover of the coffin. In the jar coffin, multiple skeletons

were found together (Figure 2). No specific pattern was detected in the

placement of skeletal elements within the jar coffin, although more

skulls were placed in the upper part of the jar. No case of a sequential

multiple burial (i.e. individuals were sequentially put to the jar coffin

over an extended time period) has been reported for this type of jar cof-

fins, although there are cases with those consisting of two jars. Also,

individuals in this jar coffin were not separated into layers, a pattern

expected for a sequential multiple burial. Thus, multiple skeletons in the

jar coffin are considered as interred together approximately at the same

time as a secondary burial. After finishing the excavation, a pottery as a

grave good was found at the bottom of a circular pit, implying that ritual

behavior was performed before laying the jar-coffin in state. The height

of the jar, from the lower part of the jar to the top is 72.3 cm, and its

diameter is 32.1 cm.

2.2 | Permission for destructive analyses of
skeletal elements

The excavator of the Dangbuk-ri archeological site, Central Institute

of Cultural Heritage, gave a permission to research the skeletal

F IGURE 2 The site map of the Dangbuk-ri site. The map shows
the location of the jar coffin and the other 20 three kingdoms period
tombs. Among the 16 stone-chamber and 4 stone-cist burials, four
(two stone-chamber and two stone-cist) were located about 2 km
away from the location on the map. The inset in the middle shows a
wide view of the Gunsan jar-coffin in situ and the skeletal remains of
the Gunsan jar-coffin individuals.
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remains for the purposes of their scientific research. Specifically, the

authors were given a permission for destructive sampling for the pur-

pose of DNA sequencing, mass spectrometry of peptides, radiocarbon

dating, and stable isotope analysis. The archeological investigation of

the Dangbuk-ri site at Gunsan, South Korea was conducted by the

Central Institute of Cultural Heritage, from July to August of 2016.

Prior to the full-scale excavation, a public announcement was made

based on the Funeral Services Related Act (Section 2) in order to find

possible descendants of the individuals found at the site. As no skele-

tal remains had been claimed 60 days after the announcement, the

excavation was allowed to proceed, and with permission of the Cen-

tral Institute of Cultural Heritage, the skeletal remains were moved to

the Bio-anthropology Laboratory of Seoul National University for

bioanthropological examination and ancient DNA analysis.

2.3 | Skeletal analysis

All skeletons were macroscopically examined by the two authors (E.J.W

and C.L.J). In order to estimate the minimum number of individuals

(MNI) in a jar, fragments were first identified by element type, and con-

joining process was conducted to refit fragments from the same bone.

Identified elements were classified as either adult or subadult according

to the degree of dental development, long-bone epiphyseal fusion,

diaphyseal length, cranial size and cortical thickness. Bones with fully

fused epiphyses and within the adult-sized range elements were classi-

fied as adults. Meanwhile, skeletal elements with unfused epiphyses

and within the size range of the subadults were classified into the sub-

adult category. After the skeletal elements were sorted to individuals,

age estimation was further refined based on morphological features.

The value of MNI was derived by sorting elements into lefts and rights,

and then taking the greatest number as the final estimate following a

published protocol (T. E. White, 1953). Severely fragmented skeletal

elements such as ribs, vertebrae and phalanges were excluded from cal-

culating MNI due to uncertainty in siding. Then, visual pair-matching

was conducted to decide if principal limb bones were from a single indi-

vidual through the comparison of right and left elements. Finally, differ-

ent parts of the skeletal elements were segregated into individuals

based on the examination of degenerative changes, articulation, robusti-

city, age, and sex, along with osteometric sorting (Adams & Byrd, 2014).

The sex and age were estimated for each skeletal individual,

based on the Standards for Data Collection (Buikstra &

Ubelaker, 1994; Ubelaker, 1999). Sex was estimated using morpho-

logical features of the skull and robusticity of limb bones. We were

unable to use the pelvis for sex estimation because most pelvic

elements in the jar-coffin were severely fragmented. The age at

death of each individual was estimated by dental attrition, number

of antemortem tooth loss, cranial suture closure, degeneration of

the auricular surface and pubic symphyseal surface, and degenera-

tive changes of joint in limb bones and the vertebral column. The

age of subadults was estimated using the degrees of tooth formation

and eruption, epiphyseal fusion or diaphyseal length (Buikstra &

Ubelaker, 1994; T. D. White & Folkens, 2005).

2.4 | Sampling of skeletal materials

Sample selection was performed by E.J.W. and C.L.J. in the Bioanthro-

pology laboratory (Department of Anthropology, Seoul National Uni-

versity). As compact bones are preferred for ancient DNA analysis,

intact petrous parts of the temporal bone from seven individuals were

chosen. Two out of nine individuals were not included in the analysis

since the temporal parts including petrous were not well preserved. In

case of five adults, the left petrous bone was selected, for two sub-

adults, the right petrous parts were sampled. The outer surface of the

petrous pyramid inside the skull was ground with a 4.8 mm cutter burr

attached to a Dremel 9100-21 Fortiflex 2.5-Amp Stationary Flex Shaft

Precision Rotary Tool (Dremel, Mount Prospect, IL). Then, the inferior

border of the cochlea was ground to create a small opening into the

osseous labyrinth (Sirak et al., 2017). Into this opening, a 3.2 mm

engraving cutting burr was applied in a circular motion to obtain bone

powder. The powder was collected in a sterilized paper foil and placed

in a sterile 1.5 ml Eppendorf tube for DNA extraction.

2.5 | Ancient DNA laboratory work and
sequencing

For each of the seven individuals, a double-strand double-indexed Illu-

mina sequencing library was built from metagenomic DNA extracted

from 30 to 50 mg of bone powder. DNA extraction and library prepara-

tion were performed using the previously published protocols (Dabney

et al., 2013). For library preparation, a partial treatment of the uracil-

DNA-glycosylase (UDG) enzyme was included following a published

protocol (Rohland et al., 2015) to confine deaminated bases to the ends

of the reads. All laboratory works up to library prepraration step were

performed in a dedicated ancient DNA (aDNA) clean room facility of

the Max Planck Institute for the Science of Human History (MPI-SHH),

Jena, Germany. For six of the seven individuals with sufficient levels of

human DNA preservation, ranging 0.1%–2.6%, two rounds of in-

solution capture for 1.24 million ancestry-informative single nucleotide

polymorphisms (SNPs) (the “1240K” panel) was performed to enrich

libraries (Mathieson et al., 2015). All libraries were sequenced using

single-end 76 base pair (bp) sequencing on the Illumina HiSeq 4000

platform following the manufacturer's protocols.

2.6 | Ancient DNA sequencing data processing and
authentication

aDNA sequencing data were processed using the EAGER v1.92.50

wrapper (Peltzer et al., 2016). Within the EAGER wrapper, Illumina

adapter sequences were first trimmed from raw reads using the Adap-

terRemoval v2.3.0 (Schubert et al., 2016). Adapter-trimmed reads of

30 bp or longer were mapped to the human reference genome with

decoy sequences (hs37d5) using the aln/samse modules in BWA

v0.7.17 with “-n 0.01” option (Li & Durbin, 2009). PCR duplicates

were removed using the DeDup v0.12.5 (Peltzer et al., 2016),

4 LEE ET AL.
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assuming that both ends of the reads were known. Unique mapped

reads with Phred-scaled mapping quality score 30 or higher were kept

using the samtools v1.9 (Li et al., 2009). To remove deamination-

based misincorporations (50 C > T and 30 G > A), the first and last two

bases of each read were soft-masked using the trimBam module of

bamUtils v1.0.14 (Jun et al., 2015). Finally, pseudo-haploid genotype

data were determined by randomly sampling a single high-quality base

(Phred-scaled base quality score 30 or higher) per site per individual

using samtools mpileup and pileupCaller v1.4.0.5 (downloaded from

https://github.com/stschiff/sequenceTools). For C/T and G/A SNPs,

end-masked BAM files were used. For the remaining SNPs that are

not affected by post-mortem deamination, BAM files without end-

masking were used to maximize sequence data usage. The authentic-

ity of sequence data was checked by multiple measures. First,

chemical modifications typical of aDNA molecules were tabulated

using mapDamage v2.0.9 (Jonsson et al., 2013). Second, mitochondrial

DNA contamination was estimated using the schmutzi v1.5.5.5

(Renaud et al., 2015). Third, X chromosome-based estimation of

nuclear DNA contamination was performed for four male individuals

using the contamination module of the ANGSD v0.929 program

(Korneliussen et al., 2014). Mitochondrial haplogroups were deter-

mined by applying the HaploGrep v2 program (Weissensteiner

et al., 2016) to the consensus sequences called by the log2fasta

program in schmutzi with “-q1000 filter. Y haplogroups were deter-

mined using a modified version of the yHaplo program with

“--ancStopThresh 10” option to prevent the root-to-tip search from

halting in an internal branch due to missing data (downloaded from

https://github.com/alexhbnr/yhaplo) (Poznik, 2016).

2.7 | Reprocessing of whole genome sequences of
present-day Koreans

We downloaded high-coverage whole genome sequencing data of

104 Koreans from the Ulsan city from KoVariome data (ftp://

biodisk.org/Release/KPGP/KPGP_Data_2017_Release_Candidate/).

For the FASTQ files with the Phred-64 scale quality scores, we

rescaled quality scores to the Phred-33 scale using seqtk v1.3-r106

with “seqtk seq–VQ64” command (https://github.com/lh3/seqtk).

We aligned reads to the human reference genome (hs37d5) using

the BWA mem program v0.7.17 with “-M” flag (Li & Durbin, 2010).

We kept properly aligned paired-end reads by applying “-f 0�0003”
filter in samtools view v1.9 (Li et al., 2009) and merged per-lane

BAM files into per-individual ones using samtools merge. We

removed duplicates using the Picard MarkDuplicates v2.20.0 (down-

loaded from https://broadinstitute.github.io/picard/) and kept reads

with Phred-scaled mapping quality score 25 or higher. From these

analysis-ready BAM files, we produced two genotype calls for the

1,233,013 SNPs in the 1240 K panel. First, we calculated genotype

likelihoods for each individual using the UnifiedGenotyper module

of the Genome Analysis ToolKit (GATK) v3.8.1.0 (McKenna

et al., 2010) with the “--allSitesPLs” flag, calculated posterior geno-

type probability by multiplying genotype likelihoods with the GATK

default prior [0.9985, 0.0010, 0.0005], and took genotype calls with

posterior probability 0.900 or higher. Second, we randomly sampled

a base with the Phred-scaled base quality score 30 or higher from a

read with mapping quality score 30 or higher per site per individual

to create a pseudo-haploid call that mimics the genotype calling pro-

cedure of low-coverage ancient individuals. For this procedure, we

used samtools mpileup and pileupCaller v1.4.0.5. We merged the

two genotype calls of present-day Ulsan Koreans with the genome-

wide data of world-wide present-day populations typed on the Affy-

metrix Axiom® Genome-Wide Human Origins 1 array (“HumanOri-

gins”) and the 1240 K dataset for downstream analyses. We

determined genetic sex of each individual by comparing coverage of

sex chromosomes with autosomes calculated for the 1240K sites

using samtools depth (Figure S1). We detected genetic outliers by

projecting Ulsan Koreans to the top principal components calculated

for 2077 present-day Eurasian individuals using the smartpca pro-

gram v16000 in the EIGENSOFT package v7.2.1 (Patterson

et al., 2006). For the remaining individuals, we detected close rela-

tive pairs by calculating pairwise mismatch rate (PMR) for each pair

using the random haploid calls and by estimating kinship coefficients

using the “--Z-genome” module in PLINK v1.90b6.9 (Chang

et al., 2015). We removed one individual from each relative pair up

to the second-degree relatives for the downstream group-based

analyses (Figure S2 and Table S1).

2.8 | Data set compilation

We merged genome-wide genotype data of 2967 present-day indi-

viduals typed on the HumanOrigins array (Jeong et al., 2019;

Lazaridis et al., 2016; Patterson et al., 2012) with whole genome

sequences of 104 Koreans from Ulsan (J. Kim et al., 2018), six Gun-

san jar coffin individuals from this study, and previously published

ancient individuals (Allentoft et al., 2015; Cooke et al., 2021; Dam-

gaard, Marchi, et al., 2018; Damgaard, Martiniano, et al., 2018; Fu

et al., 2014; Fu et al., 2016; Haber et al., 2017; Harney et al., 2018;

Jeong et al., 2016; Jeong et al., 2020; Jeong et al., 2018; Jones

et al., 2015; Kanzawa-Kiriyama et al., 2019; Krzewi�nska

et al., 2018; Lazaridis et al., 2017; Lazaridis et al., 2016; Lazaridis

et al., 2014; Lipson et al., 2018; Mathieson et al., 2018; Mathieson

et al., 2015; McColl et al., 2018; Moreno-Mayar et al., 2018;

Narasimhan et al., 2019; Ning et al., 2020; Raghavan, DeGiorgio,

et al., 2014; Raghavan, Skoglund, et al., 2014; Rasmussen

et al., 2014; Rasmussen et al., 2010; Rasmussen et al., 2015; Sikora

et al., 2019; Unterlander et al., 2017; C.-C. Wang et al., 2020;

T. Wang et al., 2021; M. A. Yang et al., 2020; Melinda A Yang

et al., 2017; Yu et al., 2020). We also merged present-day world-

wide populations genotyped on the 1240K sites (Mallick

et al., 2016) with whole genome sequences of 104 Koreans from

Ulsan, six Gunsan jar coffin individuals from this study, and the pre-

viously published ancient individuals to produce 1240K dataset.

We provide a list of analysis groups and individuals used for each

analysis (Table S2).
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2.9 | Principal component analysis

We ran principal component analysis (PCA) with 2077 present-day

Eurasian individuals from HumanOrigins dataset with the option

“lsqproject: YES” using smartpca v16000 and projected present-day

Ulsan Koreans and the Gunsan and other ancient East Asian individ-

uals onto the PCs. For the East Asian-only PCA, we ran PCA with

455 present-day East Asian individuals including Ulsan Koreans with

the option “lsqproject: YES” and “shrinkmode: YES” using the

smartpca v16000 and projected present-day Ulsan Koreans and the

Gunsan and other ancient East Asian individuals onto the PCs.

2.10 | Genetic kinship analysis

We calculated PMR between each pair of ancient Gunsan jar coffin

individuals across the 1,150,639 autosomal SNPs in the 1240K panel.

Each pair was covered by at least 66,442 SNPs. We estimated proba-

bility of sharing 0, 1, and 2 alleles using the lcMLkin v0.5.0 to distin-

guish between parent-offspring and full sibling (Lipatov et al., 2015).

For the group-based analyses, we removed first-degree relatives and

kept three individuals (GUC002, GUC003, and GUC005) with minimal

genetic relatedness (Table S3).

2.11 | Runs of homozygosity analysis

We investigated the runs of homozygosity (ROH) segments within the

genome of each Gunsan jar coffin individual to understand parental

relatedness using hapROH (downloaded from https://pypi.org/

project/hapROH/ v0.3a1) (Ringbauer et al., 2021).

2.12 | F-statistics and qpWave/qpAdm analysis

We obtained f-statistics using 1240K dataset to maximize SNP cover-

age of ancient individuals. We calculated outgroup-f3 statistics of the

form f3(Mbuti; Gunsan jar coffin, world-wide) using qp3Pop v650 to

measure genetic affinity between two populations. We calculated f4

statistics of the form f4(Mbuti, world-wide; Gunsan jar coffin, present-

day Korean) using the qpDstat v970 with the option “f4mode: YES.”
We used 121 present-day world-wide populations and 167 ancient

populations for these calculations (Table S2). We tested various

admixture models of ancient and present-day East Asian populations

using qpWave v1200 and qpAdm v1201 programs in the AdmixTools

v7.0 (Lazaridis et al., 2016; Reich et al., 2012) on 1240K dataset. We

used 10 populations as an outgroup set (“right” populations): central

African Mbuti (Mbuti.DG; n = 5), Early Neolithic farmers from western

Anatolia (Anatolia_N; n = 23), Andamanese islanders Onge (Onge.DG;

n = 2), Neolithic Iranians from the Ganj Dareh site (Iran_N; n = 8),

Epi-Paleolithic European hunter-gatherer from the Villabruna site

(Villabruna; n = 1), a Late Pleistocene Native American individual from

the Upward Sun River site in Alaska (USR1; n = 1), Early Neolithic

hunter-gatherers from the western Baikal region (Baikal_EN; n = 18),

an Early Neolithic individual from Shandong region in China (Boshan;

n = 1), an Early Neolithic individual from the southern Chinese Liang-

dao site (Liangdao2; n = 1), and Funadomari Jomon

(Jomon_Funadomari; n = 2). The right population set was heuristically

chosen to distinguish major ancestry components in Eurasia in high

resolution. Mbuti is a common outgroup to all Eurasian populations.

Anatolia_N, Iran_N, Villabruna are to distinguish between major

ancestry components of Western Eurasians. Onge is a deeply diverg-

ing branch within Eastern Eurasians. USR1, Baikal_EN, Boshan,

Langdao2 are to distinguish East Asian populations along their north–

TABLE 1 Summary of morphological examination of the skeletal
elements found in the Gunsan jar coffin

A. Estimation of MNI

Adult Subadult

Element Right Left Right Left MNI

Cranium

Frontal 6 2 8

Parietal 6 6 2 1 8

Temporal 6 6 2 2 8

Occipital 6 1 7

Maxilla 5 3 1 1 6

Mandible 4 5 2 1 7

Clavicle 5 4 0 0 5

Scapula 5 5 0 0 5

Humerus 5 5 3 2 8

Radius 5 4 2 1 7

Ulna 5 5 3 2 8

Os coxae 6 5 2 0 8

Femur 5 5 3 3 8

Tibia 5 5 2 3 8

Fibula 5 5 0 0 5

B. Estimation of sex and age

Age category ID Skeletal sex Age at death

Adult 01 F 50+ years

02 M 36–50 years

03 F 21–35 years

04 F Adult

05 M 36–50 years

06 Probably F 21–35 years

Subadult 07 Indeterminable 2–4 years

08 Indeterminable 6–10 years

09 Indeterminable 15–18 years

Note: (a) Estimation of MNI based on the number of skeletal elements. We

detected at least six adult individuals and three subadults, totaling at least

nine individuals in the jar coffin. Because of incomplete preservation of

skeletal elements per individual, per-element MNI is smaller than the MNI

based on all elements. (b) Estimation of sex and age of each individual.
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south genetic cline. And finally Funadomari Jomon is to tag the Jomon

ancestry. We included “allsnps: NO” option.

3 | RESULTS

3.1 | Ancient genome-wide data production

We performed a genetic investigation of early Medieval individuals

from Dangbuk-ri, Gunsan, in the southwestern region of the Repub-

lic of Korea (Figure 1 and Table 1). These individuals are dated to

5th to 7th century AD based on archeological contexts and are

found in a single jar coffin, with signatures of secondary burial: mul-

tiple burials, either primary or secondary, within a single jar coffin

are exceptional given that most jar coffins host only a single indi-

vidual. Based on the macroscopic examination of all skeletal ele-

ments retrieved from the jar coffin, we determined MNI as nine,

including six adults and three subadults (Table 1). Following an in-

solution capture protocol for ~1.2 million informative SNPs

(Mathieson et al., 2015), we obtained genome-wide data with

189K–764K on-target SNPs covered at least once for six individ-

uals (Table 2). The remaining three of nine individuals in the jar cof-

fin did not yield sufficient genomic DNA to be analyzed. All six

individuals show post-mortem chemical damages typical of aDNA

and five of them show a minimal level of exogenous human DNA

contamination. All four males show nuclear contamination <2%

based on their X chromosome data and five of six individuals have

mitochondrial contamination of 1–3%. Based on these measures,

we included all six individuals into the downstream analysis, includ-

ing the one female without a contamination measure due to low

mitochondrial coverage (Table 2). For each individual, we called

haploid genotypes across the 1240K panel SNPs by randomly sam-

pling a high-quality base. We concatenated their genotype data

with published presenet-day and ancient individuals on the Huma-

nOrigins and the 1240K data sets for downstream analyses

(Table S2).

TABLE 2 A summary of sequencing and genetic information of six ancient individuals in this study

Lab ID ID Genetic sex

Pre-capture %

human DNA

Post-capture %

target reads # of reads sequenced

# of uniquely

mapped reads

GUC001 01; skull 1 M 0.129 2.45 36,063,678 1,169,573

GUC002 02; skull 2 M 1.219 14.90 25,871,919 5,363,973

GUC003 03; skull 3 M 0.307 4.99 32,502,379 2,076,521

GUC004 04; skull 4 F 0.350 6.89 36,179,211 2,592,575

GUC005 06; skull 6 M 2.624 22.91 20,992,582 6,805,731

GUC007 09; subadult 3 F 1.656 18.35 24,249,836 5,438,347

GUC006 08; subadult 2 N/A 0.030 Fail N/A N/A

Coverage # of covered target sites

Lab ID Lat Lon Autosome X Y MT 1240K HumanOrigins

GUC001 35.94038889 126.7141944 0.195 0.075 0.091 0.54 189,920 96,738

GUC002 35.94038889 126.7141944 1.097 0.420 0.518 3.11 639,758 327,372

GUC003 35.94038889 126.7141944 0.312 0.122 0.147 0.48 284,857 144,896

GUC004 35.94038889 126.7141944 0.397 0.304 0.004 0.56 342,704 174,677

GUC005 35.94038889 126.7141944 1.839 0.698 0.939 2.17 764,537 389,635

GUC007 35.94038889 126.7141944 1.087 0.812 0.015 2.22 643,530 330,307

Post-mortem damage Contamination estimates Uniparental haplogroup

Lab ID 50 C > T 30 G > A X MT MT Y

GUC001 0.2928 0.2819 0.0184 ± 0.0147 0.01 (0.00–0.02) D4c1b1 Q1a (Q-L472)

GUC002 0.2096 0.1952 0.0020 ± 0.0017 0.01 (0.00–0.02) D4b2b1 Q1a1a1 (Q-M120)

GUC003 0.2623 0.2575 0.0106 ± 0.0073 0.01 (0.00–0.02) B5b3a Q1a1 (Q-F1251)

GUC004 0.2413 0.2376 N/A N/A N/A –

GUC005 0.2140 0.2012 0.0058 ± 0.0016 0.03 (0.01–0.05) D4c1b1 O1b2a2a1a (O-CTS7620)

GUC007 0.2328 0.2119 N/A 0.02 (0.00–0.04) D4c1b1 –

Note: Six of the seven individuals yield sufficient human DNA for genome-wide analysis. The numbers of covered target sites are counted among

1,233,013 SNPs in the 1240K panel and 593,124 autosomal SNPs in the HumanOrigins panel. X-chromosome-based contamination estimates represent

the point estimate ±1 s.e.m., and mitochondrial estimates represent the point estimate and the 95% credible interval.
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F IGURE 3 Principal component
analysis from 2077 present-day Eurasian
individuals. We project the Gunsan jar
coffin and other ancient east Asian
individuals and present-day Koreans from
Ulsan (marked by color-filled shapes) onto
the top two PCs calculated for 2077
present-day Eurasian individuals (marked
by three-letter codes). Present-day and

ancient Koreans fall on top of each other.

GUC002
MT: D4b2b1

Y: Q1a1a

GUC004
MT: (D4c1b1)

Y: -

GUC001
MT: D4c1b1

Y: Q1a

GUC007
MT: D4c1b1

Y: -
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MT: B5b3a
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(sharing Y haplogroup)
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MT: D4c1b1

Y: O1b2a2a1a

1st degree

Likely father-daughter 

or mother-son

(a)

(b)

F IGURE 4 Genetic relationship of the
six Gunsan jar coffin individuals. (a) we
show the estimated genetic relatedness of
15 pairs of the Gunsan jar coffin
individuals with the pairwise mismatch
rate of genotypes (color-filled shapes). On
the background, we plot the density of
the pairwise mismatch rate values of
102 present-day Ulsan Koreans. Dotted
vertical lines represent the expected
pairwise mismatch rate of the identical,
1st degree, 2nd degree, 3rd degree
relatives and the unrelated pairs of
present-day Koreans, from left to right,
respectively. Gunsan jar coffin individuals
show slightly higher pairwise mismatch
rate values than the present-day Koreans.
(b) a reconstruction of the pedigree of the
six Gunsan jar coffin individuals. MT and Y
represent the corresponding uniparental
haplogroups. GUC004 and GUC005 are
the 1st degree relatives that are likely
mother-son or father-daughter. Here we
show a mother–son relationship based on
the shared MT haplotype between

GUC005 and (GUC001, GUC007),
offspring of GUC004.
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3.2 | A familial relationship of individuals from a
single jar coffin

We first ran PCA of 2077 present-day Eurasians and projected

ancient individuals from the Gunsan jar coffin onto the top PCs

(Figure 3). All six individuals fall close to each other and to present-

day Koreans, suggesting no substantial genetic heterogeneity among

them and an overall close relationship with present-day Koreans

(Figure 3). In the PCA of present-day East Asians including present-

day Koreans, the Gunsan jar coffin individuals also overlap with

present-day Koreans (Figure S3).

Then we measured the genetic relatedness between these

ancient individuals to test if the unusual occasion of multiple individ-

uals in a single jar coffin reflects their close relationship. Our estimates

of genetic relatedness based on genome-wide data indeed show that

these individuals form a closely related extended family: among

15 pairs combined from six individuals, we observe six first-degree,

two second-degree, and one third-degree relative pairs (Figure 4a;

Table S3). Incorporating mitochondrial and Y haplogroup information

and age at death, we distinguish between parent-offspring and full

sibling pairs and propose the most plausible pedigrees (Figure 4b). At

the core of this pedigree is a quartet family composed of a couple and

their two children, one adult male and one subadult female. Among

the remaining two individuals, one male (GUC005) is the first degree

relative of the mother of the quartet (GUC004) and the second degree

relative of the two children (GUC001 and GUC007), but is unrelated

to the father (GUC002). The 1st degree relationship of GUC005 and

GUC004 is likely a parent-offspring one given the near-zero sharing

of both alleles at the same SNP (Table S3). Both father–daughter and

mother–son relationship are compatible with genetic data, however,

given that GUC005 and the quartet children share the identical mito-

chondrial haplogroup, we propose mother-son may be more likely.

That is, GUC005 and (GUC001, GUC007) may be half-siblings with

the same mother. Lastly, GUC003 is most likely a 3rd degree relative

of the quartet father, sharing the same Y haplogroup.

We also investigated the distribution of ROH segments in the

Gunsan individuals using hapROH (Ringbauer et al., 2021). Finding

few long ROH segments (>4 cM), we conclude that none of these

individuals were the offspring of close relatives (Figure S6).

3.3 | The genetic profile of early medieval Koreans

To understand the genetic profile of the early Medieval Koreans from

the Gunsan jar coffin, we first measured the genetic affinity between

the Gunsan jar coffin group and world-wide present-day and ancient

populations using outgroup-f3 statistics of the form f3 (Mbuti; Gunsan

jar coffin, world-wide). As expected, the Gunsan jar coffin group

shows the highest genetic affinity with present-day Koreans

(Figure S4). Formally testing the genetic symmetry of the early Medie-

val and present-day Koreans using f4 statistics of the form f4(Mbuti,

world-wide; Gunsan jar coffin, present-day Korean), only a few groups

break the symmetry without clear geographic distribution (Figure S5).

Likewise, the qpWave test of cladality is only marginally significant

between the early Medieval and present-day Koreans (p = 0.029 for

SGDP Korean and p = 0.030 for Ulsan Korean; Table S4). To find an

extra genetic component that can explain the marginal difference

between ancient and present-day Korean groups, we utilized

qpAdm, which summarizes multiple f4 statistics to test if a mixture

of allele frequency of the chosen source populations can accurately

mimic that of the target population (Lazaridis et al., 2016; Reich

et al., 2012). Specifically, we investigated (i) if other mainland East

Asian populations may have contributed to the difference, (ii) if the

Jomon-related ancestry may have contributed to the difference, and

(iii) if the difference is artifact due to a small amount of contamina-

tion, likely from a European source considering the laboratory work

place. We find that the present-day Koreans from Ulsan city

(n = 88) are adequately modeled as a mixture of Gunsan jar coffin

group and a European source with a small negative coefficient

(�1.0% to �1.4%; Table S5A). Reciprocally, Gunsan jar coffin group

is modeled as a mixture of present-day Ulsan Koreans and a small

contribution from a European source (1.0%–1.4%; Table S5A).

Models including neither Jomon-related nor other East Asian

sources show their robust contribution. Therefore, we interpret

these results as a technical artifact rather than a signal of true

admixture, considering a comparable amount of nuclear contamina-

tion in Gunsan individuals (0.2%–1.8%) and the small reference bias

introduced during the read mapping step.

To compare the genetic profiles of the ancient and present-day

Koreans with populations of the surrounding regions in a broader

sense, we searched for distal admixture models that were commonly

applicable to those populations. Among the 57 pairs of ancient East

Asian populations along the north–south genetic cline we tested, only

a small number of pairs fit a broad range of the target populations,

encompassing the Gunsan jar coffin individuals, present-day Koreans,

and various ancient groups from northern China, with small

s.e.m. values and thus can provide a platform to compare the genetic

profile of the target populations (Table S6). For example, the target

populations are adequately positioned along the genetic north–south

cline in East Asia, within the range defined by the following two popu-

lations: (i) Bronze Age individuals from the Longtoushan archeological

site of the West Liao River region in the Upper Xiajiadian culture con-

text (“WLR_BA”) as a genetic northern proxy, and (ii) Late Neolithic

individuals from the Xitoucun site in southern China (“Xitoucun”) as a
genetic southern proxy (Figure 5; Table S7A). In both ancient and

present-day Koreans, we do not detect a statistically significant con-

tribution from the Jomon hunter-gatherer gene pool of the Japanese

archipelago (Table S7A), although previous studies report occasional

presence of the Jomon ancestry contribution from Neolithic to the

early Medieval period (Gelabert et al., 2022; Robbeets et al., 2021).

When we replace the genetic northern proxy fromWLR_BA to Middle

Neolithic individuals from the Miaogizou site in Inner Mongolia

(“Miaozigou_MN”), we detect a small but significant amount of Jomon

contribution in the Gunsan individuals and present-day Ulsan Koreans

(3.1%–4.4%; Table S7B). We believe that WLR_BA provides a more

suitable model for ancient and present-day Koreans given its
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geographical and temporal proximity to them. The remaining well-

fitting source pairs provide qualitatively similar results (Table S8).

4 | DISCUSSION

We present a genomic study of individuals from the Gunsan jar cof-

fin, an unusual case of a secondary multiple burial where at least

nine individuals were co-buried in a single small jar coffin. We con-

firm our hypothesis that this unusual burial represents an unusual

relationship among the co-buried individuals, that is, an extended

family, including a core of a couple and their two children, as well as

both paternal and maternal relatives. The inferred pedigree may

imply little gender bias in the family structure of early Medieval

Koreans lived in the area. Further archaeogenomic studies on the

ancient individuals excavated from an unusual burial context or

those from a single cemetery will provide more insights into past

mortuary practices and social structures.

While the genetic origins of present-day Koreans have not been

fully understood due to lack of relevant ancient genome data, individ-

uals from the Gunsan jar coffin provide among the first past human

genetic profiles in ancient Korea. Since this type of small jar coffins

are considered to be associated with commoners rather than with

sociopolitical elites, the Gunsan jar coffin individuals provide a glimpse

on the genetic profile of the general population of the early Medieval

Korea, albeit small in number. Our population genomic analysis shows

a long-term presence of the genetic profile of present-day Koreans in

the Korean peninsula at least since the early Medieval period. How-

ever, this does not imply a complete genetic isolation of the Korean

population from their neighbors over the last two millennia. On the

contrary, there are a growing body of genetic evidence supporting

high connectivity between proto-historic Korea and its neighboring

regions: a recent study reported a few early Medieval individuals with

a substantial level of the Jomon ancestry from the Japanese archipel-

ago (Gelabert et al., 2022), suggesting a vibrant international network

supporting movements of people and goods. Furthermore, Kofun-

period individuals from Japan suggests a continued gene flow from

the continental East Asia with the Korean peninsula as a highly likely

source region (Cooke et al., 2021). Further archaeogenetic studies on

proto-historic sites in and around the Korean peninsula will help us

accurately delineate the networks between the past East Asian socie-

ties and investigate the genetic diversity among the proto-historic

Korean populations.
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